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1. Introduction
There are many different approaches to modeling uncer-
tainty in the context of optimization problems. Different
criteria, ranging from tractability issues to practical appro-
priateness to modeling concerns, motivate these disparate
approaches.

A typical critique of stochastic approaches is that prob-
ability distributions are often unknown in practice and
can be computationally unwieldy. The robust optimiza-
tion paradigm (advanced by Ben-Tal and Nemirovski 1998,
El Ghaoui et al. 1998, and Bertsimas and Sim 2004, among
others) instead relies on deterministic sets and boasts favor-
able tractability properties for many classes of optimiza-
tion problems. Specifically, when attempting to maximize
a payoff function f �x� �= f �x�u�, where x are decision
variables and u are uncertain parameters, the robust opti-
mization framework focuses on subproblems of the form

inf
u∈�

f �x�u�� (1)

On the other hand, in many applications, particu-
larly financial ones, it is natural to have at least some

probabilistic description of the world. In particular, u can
be modeled as random and having a distribution that
belongs to some set of probability measures �. This allows
for a very natural merging of the robust and the stochastic
approaches via functions of the form

inf
�∈�

Ɛ� �f �x�u�	� (2)

With (2), we are allowing for a stochastic model of the
world; but rather than pinning down the distribution exactly,
we provide some measure of robustness against distri-
butional variation. Specifically, we allow for ambiguity
described by the set of measures �.

While the approach above can be motivated from a mod-
eling standpoint, there are two clear and related critiques.
First, how should one obtain a set of distributions �? Sec-
ond, why does one want to treat distributions within �
equally (while entirely ignoring those outside �!)? For
instance, in an asset management setting, one can imagine
f is the uncertain return of a portfolio x driven by, say, a
factor model. Problem (2) might be too limiting to capture
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preferences adequately in such a situation. For instance,
in scenarios in which the market crashes, we would likely
desire guarantees that are inherently different than those in
situations in which the market performs well. More gener-
ally, we might to have assurances on performance that vary
in a smooth way with the performance of the market as a
whole.

To this end, we propose a more general version of (2)
that allows for a notion of robustness providing differ-
ent guarantees for different subsets within �. We call this
approach the soft robust approach. In addition to provid-
ing a richer modeling framework, this approach preserves
favorable convexity properties of the nominal problem.
Finally, the structure of the robust model can be guided via
the use of convex risk measures (Föllmer and Schied 2002),
which we show to be closely connected.

The concept of ambiguity has been looked at from many
angles in the economics literature; we provide only a few
of the many references on the subject. The etymology of
research on ambiguity is generally traced back to Ellsberg
(1961), although there are certainly earlier discussions (e.g.,
Knight 1921). Schmeidler (1989) formally defines a notion
of ambiguity aversion via nonadditive probability measures.
Gilboa and Schmeidler (1989) extend classical utility the-
ory to allow for multiple priors in a min-max way; Epstein
and Wang (1994) provide a related model for asset pricing.
More recently, Klibanoff et al. (2005) axiomatize a model
of “smooth ambiguity-averse” preferences that involve the
use of a second-order probability distribution. Hansen and
Sargent (2001) have linked ideas from robust control to
the problem of model misspecification for economic agents:
they work with a model based on multiplier preferences,
which is represented by a relative entropy penalty that arises
as an important, special case of our framework as well.
Maccheroni et al. (2006) derive a so-called variational pref-
erences framework for handling both risk and ambiguity.
Their resulting framework has similarities to ours from a
modeling standpoint, but their focus is on the preferences
that induce these types of functionals in the decision-making
of economic agents. Rigotti et al. (2008) study a general
model for accommodating risk and ambiguity based on con-
vex preferences that includes several of the aforementioned
preferences as special cases. Our focus here is not on pref-
erences; rather, we will take the soft robust approach as a
starting point, link it to the theory of convex risk measures,
and then focus on its relationship to standard robustness in
terms of problem complexity, conservativeness of solutions,
and downside performance guarantees in the context of opti-
mization under ambiguity.

There is a growing body of research in the optimiza-
tion and robust optimization literature geared toward han-
dling ambiguity. Calafiore and El Ghaoui (2006) consider
linear optimization problems with chance constraints in
which the underlying distribution is known to belong only
within a given set. Erdogan and Iyengar (2006) develop a
robust sampled version of ambiguous chance-constrained

problems that is feasible with high probability. Chen et al.
(2007) propose a tractable means of approximating dis-
tributionally robust optimization problems using deviation
measures. Delage and Ye (2010) provide a polynomial-
time algorithm for sample-driven robust stochastic pro-
grams with uncertainty in the mean and covariance.

Although our framework is more general, we explore the
methodology with a particular aim toward asset allocation
problems. Again, there are many references on robust port-
folio optimization. Goldfarb and Iyengar (2003) propose a
robust approach based on uncertainties in the parameters of
an underlying factor model. El Ghaoui et al. (2003) pro-
vide tractable optimization models for value-at-risk con-
straints under uncertain first- and second-order moment
information. More recently, Lim et al. (2010) develop a
robust approach based on a relative benchmark objective
that results in less pessimistic allocations. The use of con-
vex risk measures in this setting has been explored as well
(e.g., Lüthi and Doege 2005, Ben-Tal and Teboulle 1991
under a special class of convex risk measures known as opti-
mized certainty equivalents; these risk measures are recently
used by Natarajan et al. 2010 in a distribution-robust model
applied to portfolio optimization as well). For asset allo-
cation, our focus is on the ambiguity implications of such
risk measures and the trade-off between expected return and
downside performance that one can obtain by relaxing the
traditional model of set-based robustness over probability
distributions.

After completing this paper, we became aware of the
work of Fischetti and Monaci (2008), who develop an
approach called “light robustness” to cope with the issue of
overly conservative solutions in robust optimization. This
approach is somewhat different than ours. First, their main
focus is on uncertainty in the parameters of LPs, whereas
we are looking at ambiguity. In addition, the light robust
approach places a hard upper bound on the objective value
(to reduce conservatism) and then minimizes the degree of
infeasibility, measured by a weighted sum of slack vari-
ables, with a fixed uncertainty set. In contrast, we do not
impose an explicit optimality guarantee or a single uncer-
tainty set, but instead allow the feasibility guarantees to
vary across a family of uncertainty sets. Thus, in the light
robust approach, optimality is enforced in hard fashion, and
the level of feasibility is an output of the formulation; in the
soft robust approach, it is the opposite: varying levels of
feasibility are enforced up front, and the level of optimality
is ultimately an output of the formulation.

The structure of the paper is as follows. In §2, we first
state the problem and provide some of the necessary back-
ground on convex risk measures. We then introduce the soft
robust approach and show a dual relationship between soft
robustness and a representation with convex risk measures.
The latter parts of this section deal with the relationship
of the soft robust and standard robust approaches: first,
in 2.4, we discuss complexity of the soft robust approach
and show that, from an algorithmic standpoint, it can be
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dealt with by solving a sequence of standard robust prob-
lems; then, in 2.5, we compare the conservatism of the
two approaches. Section 3 provides bounds on downside
performance of both approaches under ambiguous distribu-
tions. Finally, §4 illustrates the approach on two applica-
tions: first, optimization of a portfolio of risky bonds with
ambiguous default probabilities; then, asset allocation with
re-balancing using historical market data. The appendix
contains proofs of some of the results and results related to
the asset allocation application.

2. The Soft Robust Approach
In this section, we motivate the problem in question and
provide some background on convex risk measures. We then
show our central result, which is the connection between
the soft robust approach and convex risk measures. Finally,
we compare the soft robust and standard robust approaches
in terms of complexity and conservatism.

2.1. Preliminaries

Consider the problem of maximizing an uncertain payoff
function subject to constraints. Let �
�� � be an underly-
ing measure space and let X ⊆ �n be a set representing
feasible choices for a decision vector x. Let u� 
→ �m

be a random variable that represents the uncertain param-
eters in the problem and let f � �n ×�m → � be a payoff
function, depending on both our decision x ∈ �n and the
realization u��� of the uncertain parameter. Assume further
that f �x�u���� is concave on x ∈X for all � ∈
 and that
X is a nonempty, closed, convex set. These assumptions
ensure that the nominal problem (i.e., the problem without
uncertainty for fixed u) is a convex optimization problem
and therefore not hopeless to solve by itself.

We will restrict ourselves to the case when the random
variable f �x�u� is bounded for every x ∈X. In most prac-
tical applications, we can always find reasonable bounds on
our payoffs. For instance, in asset allocation, stock prices
cannot fall below zero and are not likely to increase by
more than several standard deviations above their mean.
We also note that for the most part, the explicit dependency
of f on the random parameter u is unnecessary, and we
will simply write the uncertain payoff as f �x�, with the
understanding that f �x� is a random variable induced by u.

Our objective is to maximize f �x� in expectation. As one
motivating example, consider the problem when x is a
wealth allocation vector, u is a random return vector on the
underlying assets, and f �x�u�=U�u′x� is the payoff func-
tion, where U� �→� is a utility function representing the
investor’s risk preferences.

The nominal problem of interest, then, is max�Ɛ� �f �x�	�
x ∈X�. Notice, however, that this problem requires detailed
(if not exact) knowledge of an underlying distribution � .
In practice, such a distribution is typically inferred from
prior beliefs, an estimation procedure, or some mixture of
the two.1 Regardless, � is generally subject to ambiguity

and, ideally, we would like to ensure some level of robust-
ness against this ambiguity in the distribution.

A standard way to accomplish this is to instead solve the
problem

maximize
x∈X

Ɛ� �f �x�	�

subject to Ɛ��f �x�	� 0 ∀� ∈ ��
(3)

where � is a set of probability measures on �
�� �. This
problem maximizes the expected payoff under the reference
distribution, subject to the requirement that the expected
payoff be nonnegative2 provided the “true” distribution lies
within the set �. Intuitively, the larger the set � is, the more
robust this approach will be (but, of course, the worse its
performance level will be under � ).

A drawback of this approach is that it does not afford
much flexibility in trading off robustness for performance
under � . In particular, if a solution above is deemed too
conservative, the natural way to correct this is to reduce �
to a smaller set �̃. Doing this, however, discards entirely
any guarantees on the performance under measures in �\�̃.
Related to this is the fact that (3) does not distinguish
between measures within �; it enforces the same require-
ment for any measures in this set, even ones that are some-
how very extreme.

Instead, we propose an approach that allows us to pro-
vide guarantees that are ever weakening for probability
measures that are more extreme. In particular, we can gen-
eralize (3) to the problem

maximize
x∈X

Ɛ� �f �x�	�

subject to Ɛ��f �x�	�−� ∀� ∈ ����� �� 0�
(4)

where �����⊆ ����0 is a family of sets of measures that is
nondecreasing on � � 0 (i.e., ���1� ⊆ ���2� for all �2 �
�1 � 0). Instead of forcing f �x� to be nonnegative in
expectation for all measures in the set �, (4) imposes a
weaker requirement. Namely, this problem indexes prob-
ability measures within � according to some nonnegative
parameter � and then requires, for any measure in ����,
that the expectation be bounded below by the relaxed value
of −�. Roughly speaking, one can visualize the parameter
� as being proportional to some notion of distance between
probability measures: as � grows, the set ���� increases,
but the demand placed by the right-hand side of the con-
straint in (4) decreases as well.

Notice that (3) is just a special case of (4) with the
assignment ����= � for all �� 0. Therefore, (4), which we
will call the soft robust approach, is more general than (3),
which we will call the standard robust approach. The for-
mulation of soft robustness and its relationship to standard
robustness will be a key theme of this paper.

2.2. Convex Risk Measures

It turns out that problem (4), which we have moti-
vated purely from ambiguity and robustness considerations,
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is related to the theory of convex risk measures, which we
now briefly describe. For more detailed background, see
Föllmer and Schied (2004).

Consider a set of scenarios 
, and let 	 be a linear space
of bounded functions representing the payoffs of various
“positions” as a function of the set of outcomes 
. For any
Y1, Y2 ∈	, the shorthand notation Y1 � Y2 denotes Y1����
Y2��� ∀� ∈
. We define the following.

Definition 2.1. A function �� 	 → � is a risk measure
if it satisfies the following, for all Y1� Y2 ∈	:

1. If Y1 � Y2, then ��Y1�� ��Y2�.
2. If c ∈�, then ��Y1 + c�= ��Y1�− c.

The interpretation of a risk measure is as a capital
requirement: ��Y � represents the sure amount by which a
position needs to be augmented in order to make it accept-
able. Put another way, a position is acceptable if and only if
��Y �� 0, which means we require no additional payment
to be willing to accept the position.

In particular, it is easy to see that ��Y + ��Y �� = 0,
so by adding ��Y � to position Y , the position is now
deemed acceptable. This is the intuition behind the transla-
tion invariance property. The monotonicity property simply
imposes the reasonable requirement that positions that
dominate other positions should also have less risk associ-
ated with them.

For our purposes, we will focus on the following special
class of risk measures.

Definition 2.2. A risk measure �� 	 →� is convex if it
satisfies, for all Y1, Y2 ∈	:

���Y1 + �1−��Y2�� ���Y1�+ �1−����Y2� ∀� ∈ �0�1	�

Convexity simply makes explicit the idea that diversifi-
cation of positions cannot increase risk. Put another way,
convex risk measures encourage allocation into “bundled”
positions as opposed to extreme ones.

Now consider the case when we have a measure space
�
�� �, as is the case in our development above. Let � be
the set of all probability measures on �
�� �. Föllmer and
Schied (2002) show, under some technical conditions, that
convex risk measures on bounded random variables Y are
representable as

��Y �= sup
�∈�

�−Ɛ��Y 	−������

where �� � → � is a convex function. We say that � is
generated by the function �. Notice that such a represen-
tation does not rely on specification of any reference dis-
tribution � . Typically, we will assume the presence of a
reference distribution, but it is not explicitly necessary for
our general approach. This type of representation will allow
us to connect soft robustness to convex risk measures.

In what follows, we will focus on convex risk measures
with the following property.

Definition 2.3. We say a convex risk measure �� 	 →�
is normalized if the corresponding � is nonnegative for all
� ∈� and there exists a � ∈� such that ����= 0.

Notice that a normalized convex risk measure has the
natural property that ��0�= 0.

2.3. Soft Robustness and Convex
Risk Measures

Now let us return to the problem at hand, which is pro-
tecting ourselves, in a relaxed way, against ambiguity in
the distribution of the payoff function f . At one extreme,
we have the approach that ignores ambiguity entirely and
only focuses on expectation over a single measure � . This
is potentially dangerous, because solutions could be very
sensitive to the choice of � . At the other extreme, we have
the robust approach above, which protects equally against
all measures in some set of measures �⊆�, which can be
too conservative. The soft robust approach (4) lies between
these two extremes.

Using the representation above, we now formalize soft
robustness and link it explicitly to convex risk measures. In
everything that follows, we will denote the family of sets
of probability measures by Q, i.e.,

Q= �����⊆�� �� 0��

where ���� is nondecreasing and convex3 and ��0� is
nonempty. With this shorthand, we define the soft robust
feasible set as

XQ����
{
x ∈X� inf

�∈����
Ɛ��f �x�	�−� ∀ � ∈ �0� �	} (5)

at level � � 0. We can now connect this to convex risk
measures.

Theorem 2.1. For any �� 0,

XQ���

=
{
x ∈X� min

��0

{
��+ ��+ 1��Q

(
f �x�
�+ 1

)}
� 0

}
� (6)

where �Q is the normalized, convex risk measure generated
by the penalty function �Q:

�Q���= inf��� 0� � ∈ ������

Conversely, if � is any normalized, convex risk measure
generated by a penalty function �, then for any �� 0, the
equivalence (6) holds with � on the right and the con-
vex, nondecreasing family of measures Q� = ������⊆ ��
�� 0� on the left, where

�����= {
� ∈�� ����� �

}
�

and ���0� is nonempty.
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Proof. First consider the case when �> 0. We have

inf
{
Ɛ��f �x�	+ �� � ∈ �0� �	� � ∈ ����

}
= inf

{
Ɛ��f �x�	+�Q���� � ∈�� �Q���� �

}
=max

��0

{
−��+ inf

�∈�
{
Ɛ��f �x�	+ ��+ 1��Q���

}}

=max
��0

{
−��− ��+ 1� sup

�∈�

{
−Ɛ�

[
f �x�
�+ 1

]
−�Q���

}}

=max
��0

{
−��− ��+ 1��Q

(
f �x�
�+ 1

)}

=−min
��0

{
��+ ��+ 1��Q

(
f �x�
�+ 1

)}
�

where in the first line we are using the definition of �Q.
The second equality follows by the fact that �> 0 and ��0�
is nonempty, so the Slater condition holds; moreover, the
inf is finite because by assumption f �x� is bounded for
all x ∈ X. Therefore, by invoking standard convex duality
results (e.g., Luenberger 1969, Chapter 8), strong duality
holds, which justifies the second equality. The other equali-
ties follow by simple algebra and the definition of �Q. This
shows the equivalence when �> 0.

For the case when �= 0, we note that for any normalized
convex risk measure � and any bounded random variable Y ,

min
��0

{
��+ 1��

(
Y

�+ 1

)}
= lim

�→
��+ 1��

(
Y

�+ 1

)
�

To see this, note that for any w � 1, we have Y /w =
�1/w�Y + �1 − 1/w�0; convexity and normalization of
� then imply ��Y /w� � �1/w���Y � + �1 − 1/w���0� =
�1/w���Y �, i.e., w��Y /w�� ��Y �. Noting again that f �x�
is bounded for all x ∈X, we have

lim
�→

��+ 1��Q
(
f �x�
�+ 1

)

= lim
�→

sup
�∈�

{−Ɛ��f �x�	− ��+ 1��Q���
}

= sup
�∈��0�

�−Ɛ��f �x�	��

This is clearly equivalent to the soft robust form for �= 0.
To see that �Q is convex, it suffices to note that convexity

of the family Q implies convexity of �Q. Finally, because
�Q is by construction nonnegative and ��0� is nonempty,
there exists a � ∈� such that �Q���= 0, i.e., �Q is nor-
malized.

For the converse, assume �, generated by �, is given.
Clearly, since � is convex and � is normalized, we have Q�

as a nondecreasing, convex family and ���0� nonempty.
Having already established (6) for any �� 0 and any non-
decreasing, convex family Q with ��0� nonempty, we need
only show that �Q� = �, and the result will follow. We have

�Q�

���= inf
{
�� 0� � ∈ �����

}
= inf

{
�� 0� � ∈ {�� ∈�� ������ �

}}
= �����

which completes the proof. �

Theorem 2.1 explicitly connects soft robustness and con-
vex risk measures. It states that we can always view the soft
robust approach as imposing an appropriately defined form
of a convex risk measure, and vice versa. This provides
some kind of economic interpretation to the soft robust
approach: indeed, it is easy to verify that for any convex
risk measure � and any �� 0, the function

��Y �= inf
��0

{
��+ ��+ 1��

(
Y

�+ 1

)}

is itself a convex risk measure. The result above states we
can generate the corresponding convex risk measure �Q in
the representation according to the penalty function �Q.

Conversely, given any normalized, convex risk measure
generated by �, the representation given by (6) corresponds
to a soft robust formulation with the family of sets Q�

given as above.
In optimization terms, for � > 0, we have x ∈ XQ��� if

and only if there exists a �� 0 such that

��+ ��+ 1��
(
f �x�
�+ 1

)
� 0�

The function ��+ 1���f �x�/��+ 1�� is jointly convex on
���x�, with �� 0, so this is always a convex constraint.

To make the discussion more concrete, we now provide
a few examples.
Example 2.1 (Standard Robustness and Coherent
Risk Measures). Fix some set � = ���� ⊆ � and let
����= � for all � ∈ �0� �	. In this case, x ∈XQ��� is equiv-
alent to

inf
�∈�

Ɛ��f �x�	� 0�

which is equivalent to a coherent risk measure (Artzner
et al. 1999) on f �x�. Coherent risk measures are con-
vex risk measures with the additional property that
���Y �= ���Y � for all Y ∈	, �� 0.

This assures that we “break even” in expectation for all
probability measures � ∈ � and have no guarantees out-
side this set; this is the standard notion of robustness. As
above, � can be thought of as ambiguity representing our
uncertainty in the underlying measure � . Following similar
steps to those above, one can show under mild conditions
(see Proposition 2.2) that the feasible set can alternatively
be expressed in dual fashion as

X���=
{
x ∈X� inf

�>0

{
��+��Q

(
f �x�
�

)}
� 0

}
(7)

for the same convex risk measure �Q as in Theorem 2.1.
From here on, we will refer to the formulation (7) as the
standard robust approach at level � � 0. The connection
between coherent risk measures and robust optimization
have been explored recently in more detail by Bertsimas
and Brown (2009) and Natarajan et al. (2009).
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As another example4 for a particular structure of f , con-
sider the special case when we can decompose uncertainty
as follows: f �x� = g�x� + h, for some random variable
h, independent of x, supported on �0� �	. Letting ���� =
�� ∈ �� Ɛ��h	 � ��, and noting then that ���� = �, it is
not hard to see that

inf
�∈�

Ɛ��f �x�	�0 ⇐⇒ inf
�∈����

Ɛ��g�x�	�−� ∀�∈ �0��	�

i.e., standard robustness of a function plus bounded, addi-
tive noise is equivalent to soft robustness of the function
with the family �������∈�0� �	.
Example 2.2 (Divergence Measures and Optimized
Certainty Equivalents). Fix a reference measure � and
let � represent all measures absolutely continuous with
respect to � . Let !� �+ → �+ be a convex function that
attains a minimum value of 0 at 1. The penalty

����= Ɛ�

[
!

(
d�

d�

)]

is known as the !-divergence from � to � . It is shown by
Ben-Tal and Teboulle (2007) that the induced convex risk
measure can be written as

��Y �= inf
#∈�

�#+ Ɛ� �!
∗�−Y − #�	��

where !∗ is the conjugate of !, i.e.,

!∗�y�= sup
w∈�+

�yw−!�w���

We refer to this risk measure as the optimized certainty
equivalent (OCE) under !. Because !∗ by definition is
convex, computation of � is itself a convex optimization
problem over a single parameter #. This computation can
be interpreted as minimizing the net present value of an
uncertain debt to be paid over two periods, with !∗ play-
ing the role of a loss function (negative of a concave util-
ity function) that captures the present value of tomorrow’s
(uncertain) payment.

The robust sets have the form

����=
{
� ∈�� Ɛ�

[
!

(
d�

d�

)]
� �

}
�

and the problem can be interpreted as enforcing weaker
constraints at measures with greater !-divergence from � .

For instance, consider the family of functions

!%�w�=
1
%
w+ 1

1−%
− 1
%�1−%�

w1−%�

parameterized by % ∈ �0�1	. The corresponding conjugate
function is given by

!∗
%�y�=




1

1−%
��1−%y��%−1�/% − 1	 if y < 1/%�

+ otherwise�

For % = 1/2, the associated divergence function is
!1/2�w� = 2�

√
w − 1�2, which is the divergence function

generating the Hellinger distance

√
1
2

∫ (√
d�−√

d�
)2

between measures � and � . In the limiting case when % =
0, we recover the relative entropy divergence; indeed, we
have

lim
%→0

!∗
%�y�= lim

%→0

1
1−%

��1−%y��%−1�/% − 1	

= lim
%→0

�1−%y�−1/% − 1

= ey − 1�

which corresponds to !�w�=w logw−w+ 1. By scaling
this by a factor 1/( � 0, we obtain

����= 1
(
�

[
!

(
d�

d�

)]
= 1
(

∫
�∈


log
(
d�

d�
���

)
d�����

i.e., � is the relative entropy from � to the reference mea-
sure � scaled by (. In this case, using the duality repre-
sentation for OCEs, we obtain �(�Y �= �1/(� logƐ� �e

−(Y 	.
Following Föllmer and Schied (2004), we refer to this as
the entropic risk measure at level ( � 0.

We can use relative entropy as the basis of a soft robust
constraint. For instance, suppose we wish to protect against
all distributions � ∈� contained within �-relative entropy
of � in a soft way. Then we have x ∈XQ��� if and only if

min
��0

���+ ��+ 1��(�f �x�/��+ 1���� 0

⇐⇒ min
��0

{
��+ ��+ 1�

(
logƐ� �e

−(f �x�/��+1�	

}
� 0

⇐⇒ min
��0

���+�(/��+1��f �x���� 0�

where �( denotes the entropic risk measure with parame-
ter (. This means x ∈ XQ��� if and only if there exists a
�� 0 such that

Ɛ� �e
−(f �x�/��+1�	� e−�(�/��+1��

When f is linear in x, for fixed �� 0, this is a constraint
of a geometric program. One solution approach here would
be to solve a sequence (bisecting over �� 0) of such geo-
metric programs to obtain a soft robust solution.

Another OCE of widespread interest is the condi-
tional value-at-risk (CVaR) risk measure (see, for instance,
Rockafellar and Uryasev 2000). This family of risk mea-
sures is indexed by a parameter ) ∈ �0�1	 and defined as

CVaR) �Y �= inf
#∈�

{
#+ 1

)
Ɛ� �max�−Y − #�0�	

}
�
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CVaR is an OCE with the function

!∗�y�= 1
)

max�y�0��

Because it is also a coherent risk measure, it is described by
a single set of distributions, given in this case by ��1/)�,
where

�����

{
� ∈��

d�

d�
���� � ∀� ∈


}
�

OCEs seem useful for soft robustness because they
encompass a wide range of convex risk measures and pro-
vide a natural ambiguity interpretation in terms of diver-
gences between measures.

Example 2.3 (Comprehensive Robustness). As a varia-
tion of the theme, consider the function

����=



0� if Ɛ�

[
!

(
d�

d�

)]
� �

Ɛ�

[
!

(
d�

d�

)]
− � otherwise�

for some � > 0 and where ! satisfies the properties from
the previous example. This has the interpretation of enforc-
ing break-even performance in expectation for all proba-
bility measures within � of � according to the divergence
measure generated by !, as well as enforcing perfor-
mance guarantees outside this set that weakens as the
!-divergence between � and � grows. We can express the
corresponding risk measure �C compactly in terms of OCEs
as follows:

�C�Y �= sup
�∈�

�−Ɛ��Y 	−�����

= sup
�∈�

{
−Ɛ��Y 	−max

(
0�Ɛ�

[
!

(
d�

d�

)]
−�

)}

= sup
�∈��t∈�

{
t−Ɛ��Y 	� t�0� t��−Ɛ�

[
!

(
d�

d�

)]}

= min
�1��2∈�2+

sup
�∈��t∈�

{
−Ɛ��Y 	+�1−�1−�2�t

−�2Ɛ�

[
!

(
d�

d�

)]
+�2�

}
�

Clearly, for the supremum to be finite we must have
�1 + �2 = 1, so it suffices to consider �1 ∈ �0�1	. If the
corresponding optimal �1 satisfies �1 = 0, then �C�Y � =
−min�∈
 Y ��� (see the proof of Proposition 2.2). Other-
wise, we have �1 > 0 and thus

�C�Y �= min
�∈�0�1	

sup
�∈�

{
−Ɛ��Y 	−�Ɛ�

[
!

(
d�

d�

)]
+��

}

= inf
�∈�0�1	

sup
�∈�

{
−Ɛ��Y 	−�Ɛ�

[
!

(
d�

d�

)]
+��

}

= inf
�∈�0�1	

� sup
�∈�

{
−Ɛ��Y /�	− Ɛ�

[
!

(
d�

d�

)]
+ �

}

= inf
�∈�0�1	

����Y /��+����

where � is the OCE generated by !. Ben-Tal et al. (2006)
explore a similar type of robust approach, although their
methodology does not deal with probability distributions or
ambiguity.

2.4. Complexity of the Soft Robust
Optimization Problem

By definition, a soft robust problem contains an infi-
nite number of standard robust constraints (one for every
� ∈ �0� �	 and each corresponding set ����). One might
therefore wonder what the computational expense is of
imposing an infinite number of robust constraints. We show
in this section that one can optimize in a soft robust way by
solving a small sequence of standard robust optimization
problems.

Indeed, consider the problem of testing membership
within the soft robust set XQ���. With the equivalence of
separation and optimization in mind, we can do this effi-
ciently if and only if we can also efficiently compute

min
x∈X

max
�∈�0� �	

{
− inf

�∈����
Ɛ��f �x�	− �

}
�

This problem deals with an infinite number of standard
robust problems (at all levels � ∈ �0� �	). We have the fol-
lowing.

Proposition 2.1. We have

min
x∈X

max
�∈�0� �	

{
− inf

�∈����
Ɛ��f �x�	− �

}
= max

�∈�0� �	
,����

where

,����min
x∈X

{
− inf

�∈����
Ɛ��f �x�	− �

}
�

Moreover, , is a concave function on � ∈ �0� �	.
Proof. See the appendix. �

The upshot of Proposition 2.1 is that the complexity of
optimizing over a soft robust constraint is comparable to
that of optimizing over a standard robust constraint. In par-
ticular, concavity of ,��� means we can bisect on � ∈ �0� �	,
at each step solving a standard robust optimization problem
of the form

min
x∈X

{
− inf

�∈����
Ɛ��f �x�	

}
� (8)

Therefore, provided we have an oracle for solving the stan-
dard robust problem, we can solve the soft robust problem
by solving a small number of standard robust problems.
For more on the calculus of optimization of functions of
the form ��f �x�� when � is a coherent risk measure, see
Ruszczyński and Shapiro (2006).

It is also worth noting that even if one does not solve a
soft robust problem as a sequence of standard robust prob-
lems (indeed, in some cases, such as in the risky bond
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portfolio example in §4.1, we will simply formulate the
soft robust problem as a single, convex problem), Proposi-
tion 2.1 also provides a simple way of interpreting the soft
robust solution. In particular, if ,��� is strictly concave,
then there will be a single level �- ∈ �0� �	 at which the
robustness constraint is active at the optimal solution, i.e.,

inf
�∈���-�

Ɛ��f �x
-�	=−�-�

Thus, in this case, the soft robust approach is equivalent
to a standard robust approach using the set ���-� at the
level −�-. Of course, �- is not known beforehand; it is only
found after solving the soft robust problem.

If the underlying event space is large, naturally even the
standard robust problem might be difficult to solve. In such
situations, one may approximate the problem either with
samples or with some type of convex approximation. (There
are many papers on this topic; for example, in the case of
partial moment knowledge and OCEs based on piecewise
linear utility functions, see Natarajan et al. 2010.) In the
applications we consider, we will either have a manage-
able event space (the risky bond example) or approximate
an unknown distribution via samples (the asset allocation
example).

2.5. Conservatism Benefits of Soft Robustness

One of the central motivations for soft robustness is to pro-
vide solutions that are less conservative than those gener-
ated by standard robust formulations. In this section, we
provide one characterization of this phenomenon.

Consider a family of sets of distributions, Q, as before,
and fix a �� 0. Denote the standard robust feasible set by

X����
{
x ∈X� inf

�∈����
Ɛ��f �x�	� 0

}
� (9)

If we write our objective function as r�x�, we are inter-
ested in comparing problems of the form

v����max�r�x�� x ∈X����

to soft robust problems of the form

vS����max�r�x�� x ∈XQ�����

Clearly, for any fixed �� 0, X���⊆XQ���, so we have
vS��� � v���, as the soft robust approach imposes identi-
cal constraints at less restrictive levels. In this sense, the
soft robust approach is clearly less conservative than the
standard robust approach. One way to quantify the degree
of this conservatism is to fix the size parameter �, then
ask how much larger a region the soft robust approach can
“cover” without compromising objective value. We now
make this explicit.

Proposition 2.2. Let x� be an optimal solution to the stan-
dard robust problem for some � > 0 and let �- be a min-
imizer of the function ��Q�f �x��/�� + �� over � � 0.
If �- > 1, then vS��′� � v��� for all �′ � ��-/��- − 1�	�.
Otherwise, vS��′�� v��� for all �′ � 0.

Proof. See the appendix. �

Proposition 2.2 provides a post-solution mechanism for
understanding one view on how conservative a soft robust
solution will be relative to a standard robust solution. With
x� as the optimal robust solution at some level � > 0, we
have

inf
�∈����

Ɛ��f �x��	� 0�

Such a solution must also be soft robust feasible at some
level �′ � �, i.e., for some �′ � �, we must have

inf
�∈����

Ɛ��f �x��	�−� ∀ � ∈ �0� �′	�

Proposition 2.2 says we can find such a �′ by looking at
the optimal �- associated with the dual, risk measure repre-
sentation of the standard robust solution. To interpret this,
note that �- varies inversely with �; thus, large �- will
be associated with relatively small values of � for which
robustness is a fairly weak requirement. In such cases, the
solutions will be soft robust but only up to the level stated
in the result. �- small, on the other hand, correspond to
relatively high values of � for which robustness is a very
stringent requirement. Here, the robustness condition is so
strict that such solutions are automatically soft robust at any
level �′ � 0. The level �- = 1 is the threshold level between
these two types of behaviors for the robust solutions.

We note that Proposition 2.2 provides a generic result
relating the standard robust and soft robust approaches, but
it does not provide any explicit bounds on the difference
in optimality. Such statements are certainly of interest (for
instance, we might want to know the difference in optimal-
ity between a solution that ignores ambiguity (i.e., �= 0)
and the soft robust approach at some � > 0) but to make
any useful statements, one would likely need to have more
specific knowledge about the problem structure.

3. Probability Guarantees for Robust and
Soft Robust Solutions

Proposition 2.2 provides one analysis of how much less
conservative the soft robust approach can be compared
to the standard robust approach. Having less conservative
solutions is a benefit of the soft robust approach. This ben-
efit comes at the price of being less robust. From a man-
agerial perspective (particularly in financial settings, such
as asset management), one often desires an understanding
of the likelihood of a particular “downside” performance.
Computing probability guarantees that hold under ambigu-
ity for both the soft robust and standard robust approaches
is the subject of this section.
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We would like to understand what membership in XQ���
or X��� implies about downside performance of the solu-
tions. In particular, and with slight abuse of notation, we let
��XQ���� (resp., ��X����) be the set of admissible � ⊆�
such that x ∈XQ��� (resp., x ∈X���). Then we would like
to understand the implications

x ∈XQ��� =⇒ sup
�∈��XQ����

��f �x��−z��

x ∈X��� =⇒ sup
�∈��X����

��f �x��−z�

for some downside performance level z. Notice that this
will be useful in situations for which we can enforce soft
robustness (or standard robustness), but lack an analyti-
cal description of the full reference distribution. It is not
hard to conceive of such situations. As an example, let Y
be a random variable that is the sum of m independent
random variables Y = Y1 + · · · + Ym, and let ! be rela-
tive entropy. Noting the dual connection to the entropic
risk measure, enforcing soft robustness requires constraints
involving terms related to

logƐ� �e
−Y 	=

m∑
i=1

logƐ�i
�e−Yi 	�

which involves dealing only with the marginal distribu-
tions �i. If we have a tractable description of these marginal
distributions, we can enforce robustness. On the other hand,
the full distribution � requires m-dimensional convolution,
which is computationally challenging; thus, implied bounds
from robustness considerations could be useful in such a
situation because the full distribution might be difficult to
compute.

At the same time, because our focus is ambiguity, guar-
antees under only a reference distribution might not suffice
(for instance, in the example just mentioned, perhaps the
marginal distributions are not known with full precision,
or the random variables might be somewhat correlated).
In such situations, we might also want guarantees that are
also valid under distributions that are within some distance
of � . To this end, it is helpful to have some pre-specified
notion of what we mean by distance between distributions;
we will find it convenient to use sets of the following
form:

�!�3�=
{
� ∈�� Ɛ�

[
!

(
d�

d�

)]
�3

}
� (10)

for 3 � 0, where, as introduced in Example 2.2,
!� �+ →�+ is a convex function that attains a minimum
value of 0 at 1. Notice that �!�3� is the set of distributions
within a !-divergence of 3 from the reference distribu-
tion � .

In sum, given x ∈ XQ���, we seek a bound on the
quantity

sup
��∈�!�3���∈��XQ�����

��f �x��−z��

and analogously for the standard robust formulation. Here,
z is the downside performance level of interest and 3 is
an ambiguity level. Note that �!�0� = ��� here, so for
3= 0, any bounds will correspond simply to all admissible
reference distributions (i.e., without ambiguity taken into
account).

We first present a lemma that will be useful in estab-
lishing the main result of this section; these simple results
might be of some independent interest outside the context
of soft robustness.

Lemma 3.1. Let Y ∈	 be a random variable and � be a
convex risk measure. The following hold:

(a) If � is an OCE generated by !, then, for any z,

��Y �� 0 =⇒ ��Y <−z�� inf
{
p ∈ �0�1	� �1−p�!�0�

+p!

(
1

p

)
� z

}
�

(b) Let ���Y � be the set of distributions � ∈� such that
��Y �� 0 under � . If Y � �̄, then for any z�−�̄,
sup

�∈���Y �

��Y �−z�= sup�p ∈ �0�1	� ��Yz�� 0��

where Yz is the random variable, such that Yz���=−z if
Y ����−z and Yz���= �̄ otherwise.

(c) If Y satisfies ��Y � −z� � p for some z, then for
any 3> 0,

sup
�∈�!�3�

��Y �−z�� inf
�>0� #

{
�3+�

[
#+p!∗

(
1
�
− #

)

+ �1−p�!∗�−#�
]}

�

with equality holding if ��Y �−z�= p.

Proof. See the appendix. �

We will explicitly use parts (b) and (c) of Lemma 3.1
in calculating downside probability guarantees under ambi-
guity for robust solutions. We will not use (a) directly but
present it as it an auxiliary result.

To illustrate some of the statements of the lemma,
consider the case of the entropic risk measure at level
( � 0. Here, ! is a relative entropy function: !�z� =
(−1�z log z− z+ 1�, and !�0�= (−1, so (a) in the lemma
gives

1
(
�1−p�+ p

(

(
− 1
p
logp− 1

p
+ 1

)
� z

�
p� e−(z�

i.e., p�z� = e−(z. Thus, with this choice of a convex risk
measure, the probability that a feasible solution performs
worse than −z decreases exponentially with z.
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Unfortunately, the bound CVaR) �Y � � VaR)�Y � used
in the proof of (a) in the lemma is often loose. Thus,
even though these bounds can be exponential, they might
nonetheless be weak. One valuable piece of information
that is ignored is support information, which we have here
in the case of bounded random variables. Exploiting the
support information alone, as is done in part (b) of the
lemma, we can substantially improve the bounds, as we
now briefly discuss.

For instance, again with � being the entropic risk mea-
sure, we have !∗�y� = (−1�e(y − 1�, and the bound from
(b) simplifies:

sup
�∈���Y �

��Y �−z�

= sup
{
p ∈ �0�1	� (−1 log�pe(z + �1−p�e−(�̄�� 0

}
= 1− e−(�̄

e(z − e−(�̄
�

In the limit when �̄→, this bound reduces to e−(z, which
is the same as the bound from (a). For smaller values of
the right support �̄, however, this bound can be signifi-
cantly tighter than the naive, exponential bound. Therefore,
exploiting even crude information like the support of the
distribution can be quite valuable in strengthening proba-
bility guarantees. This is illustrated in Figure 1. Of course,
if one has additional information on the random variable
(e.g., mean, variance, etc.), the bounds could be further
tightened.

Remark 3.1. As a side note, the method in the proof of
Lemma 3.1(a) also provides a means for approximating

Figure 1. Bounds for the entropic risk measure for var-
ious values of the right support �̄ and ( = 1.
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is e−� .

CVaR (which can be difficult to compute in general if the
probability space is not compactly described) via convex
risk measures. In particular, given the development in the
proof of Proposition 2.2, we have

inf
�∈��z�

Ɛ��Y 	= inf
�>0

{
��

(
Y

�

)
+ z�

}
�CVaR) �Y � �

provided that )� )�z�. If we know enough about the dis-
tribution to evaluate �, we can then bound CVaR) �Y � by
choosing z accordingly. Nemirovski and Shapiro (2006) use
a special case of this in tractably bounding CVaR when
one has information about the moment generating function.
Specifically, using the entropic risk measure and choosing
z=− log), we obtain the bound

inf
�>0

�� logƐ� �e
−Y /�	− �log)����CVaR) �Y � �

This idea, proven in a very different fashion, is the basis
for the bound used in the “Bernstein approximation” of
Nemirovski and Shapiro (2006).

We are now ready to compare downside probability guar-
antees for soft robust solutions to those of standard robust
solutions.

Theorem 3.1. Let xR� ∈ X��� and xS� ∈ XQ��� be stan-
dard robust and soft robust feasible under the family of
sets Q, respectively, for some � � 0, and let �̄ be an
upper bound on f �xR� � and f �xS��. Let �

R > 0 and �S � 0
be such that �R� + �R�Q�f �xR� �/�

R� � 0 and �S� +
��S+1��Q�f �xS��/��

S+1��� 0 and Yz as in Lemma 3.1(b).
Then for any 3� 0 and any z�−�̄,

sup
��∈�!�3���∈��XQ�����

��f �xS���−z�= g�3�pS�z���

sup
��∈�!�3���∈��X�����

��f �xR� ��−z�= g�3�pR�z���

where

pR�z�� sup
{
p ∈ �0�1	� �R�+�R�Q

(
Yz
�R

)
� 0

}

pS�z�� sup
{
p ∈ �0�1	� �S�+ ��S + 1��Q

(
Yz

�S + 1

)
� 0

}
�

and

g�3�p�= inf
�>0� #

{
�3+�

[
#+p!∗

(
1
�
− #

)

+ �1−p�!∗�−#�
]}

if 3> 0 and g�0� p�= p.

Proof. First, assume 3 > 0. We first focus on the soft
robust solution. We have, using Lemma 3.1(c),

sup
��!∈��3���∈��XQ�����

��f �xS���−z��

= sup
��∈��XQ�����

g�3���f �xS���−z���
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with g�3�p� as defined above. It is not hard to see that
g�3�p� is nondecreasing in p, so the problem reduces to
computing the maximum value of ��f �xS���−z� over all
admissible � . Now, from Theorem 2.1, xS� ∈XQ��� implies
existence of a �S � 0 such that

�S�+ ��S + 1��Q�f �xS��/��
S + 1��︸ ︷︷ ︸

��̃Q�f �xS� ��

� 0�

Notice that �̃Q is a convex risk measure, so we can
apply Lemma 3.1(b). Namely, f �xS�� is a random variable
bounded above by �̄, so using the notation from the lemma,

sup
��∈��̃Q �f �x

S
� ���

��f �xS���−z�

= sup�p ∈ �0�1	� �̃Q�Yz�� 0�

= sup
{
p ∈ �0�1	� �S�+ ��S + 1��Q

(
Yz

�S + 1

)
� 0

}

= pS�z��

where in the second equality we are using the definition
of �̃Q. This establishes the claim for positive 3 for the soft
robust case.

For the standard robust case, the arguments are nearly
identical, except that we have xR� ∈ X��� and �R > 0
satisfying

�R�+�R��f �xR� �/�
R�︸ ︷︷ ︸

��̂Q�f �xR� ��

� 0�

Now applying Lemma 3.1(b) in the same manner as above
with the convex (in fact, coherent) risk measure �̂Q, we
obtain pR�z�.

For 3 = 0, there is no ambiguity, and ��0� = ���, so
it is simply a matter of maximizing under the reference
measure � . The arguments then go through as above simply
on pR�z� and pS�z�. �

Theorem 3.1 provides bounds on ambiguous distribu-
tions for soft and standard robust solutions. Although the
bounds look complicated, they are fairly simple to com-
pute because they can be found via one-dimensional convex
problems. To connect to our running example of entropic
risk measure, the robust bound in this case with ( = 1 is

pR�z�=sup
{
p∈ �0�1	�
�R�+�R log�pez/�

R+�1−p�e−�̄/�
R

	�0
}

= e−�−e−�̄/�R

ez/�R−e−�̄/�R
�

Similarly, we obtain for the soft robust solution

pS�z�= e−��S/��S+1� − e−�̄/��S+1�

ez/��S+1� − e−�̄/��S+1�
�

For �̄→, these bounds reduce to

pR�z�= e−�e−z/�
R

�

pS�z�= e−��
S/��S+1�e−z/��

S+1��

Roughly speaking, for some parameter �, the standard
robust bound scales as exp �−z/��, and the soft robust
bound scales as exp �−z/��+ 1��. When � is large relative
to z, the bounds will not be very different. For � much
smaller than z, however, the soft robust bound can be con-
siderably larger. As noted, the optimal � from the robust
problems is nonincreasing with �; we can therefore inter-
pret small enough values of � to correspond to apprecia-
bly high �. Because � is large in these situations, standard
robustness is costly, and we would expect the soft robust
solution to have weaker bounds as softening is a significant
relaxation in such cases.

In this example, we also note that the bounds in both
cases are exponential and will dominate a sharp Chebyshev
bound, which scales roughly as z−2, for large enough
deviations.

To accommodate ambiguity in the bounds, we need to
compute (with, for example, ! as relative entropy) the
function

g�3�p�= inf
�>0

{
�3+� log�pe1/� + �1−p�	

}
�

This is done easily because it is a one-dimensional con-
vex problem. We point out that if we have bounds that are
tighter than pR�z� or pS�z� (e.g., from a sharp Chebyshev
inequality or another moment-based bound), we can always
take p as the best available bound and supply it to g�3�p�
to get improved bounds that are still valid under ambiguity.

4. Applications
In this section, we illustrate the soft robust approach on
two examples: first, allocation of a portfolio of bonds with
default probabilities that might be uncertain; second, in a
portfolio optimization problem with rebalancing and histor-
ical market data.

4.1. Risky Bond Portfolio

We first illustrate our approach, including the bounds
from Theorem 3.1, with an example involving optimization
across a set of risky bonds. We have n= 49 bonds and a
single, riskless asset that pays a risk-free rate of rf = 0�005.
Each of the bonds may default and we assume in the refer-
ence model that defaults are independent. A bond defaults
with probability pi and becomes worthless; otherwise, with
probability 1− pi, the bond pays off ri > rf . We set ri =
�rf +2p2

i +pi�/�1−pi�; this ensures that the expected pay-
off of each bond is greater than rf and strictly increasing
with pi, so that bonds with higher default probabilities pay
out more. For the purposes of this example, we randomly
generate default probabilities in the range �0�001�0�05	.
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Note that the dimension of the state space is 249, so it will
likely be difficult to exactly evaluate the full probability
distribution of an allocation in these bonds.

As default probabilities are invariably not known with
full precision, and the independence assumption is likely to
be incorrect, ambiguity is a concern. We therefore consider
the optimal allocations according to the standard and soft
robust approaches and compare the results. Specifically, we
solve the two problems:

max�r̂′x� x ∈X����� and max�r̂′x� x ∈XQ�����

where r̂i is the expected return of asset i, i.e., r̂i =−pi +
�1 − pi�ri for i < 50 and r̂50 = rf . Here we will use the
family of sets Q generated by relative entropy as in (10), so
the resulting optimization problems will involve transfor-
mations of the entropic risk measure. The standard robust
problem, for instance, can be written as

max
x∈X��>0

{
r̂′x� ��+�

49∑
i=1

log
[
pi exp

(
xi
�

)

+ �1−pi� exp
(−rixi

�

)]
� rf x50

}
�

which is a convex optimization problem in �x���. The soft
robust problem is similar:

max
x∈X���0

{
r̂′x� ��+ ��+ 1�

49∑
i=1

log
[
pi exp

(
xi

�+ 1

)

+ �1−pi� exp
(−rixi
�+ 1

)]
� rf x50

}
�

Here, we will use the set X = �x� e′x = 1�xi �−0�2 ∀ i�,
i.e., we allow a limit of 20% in any leveraged asset.

We solve both problems for various choices of the
parameter �. To motivate the choice of �, we consider an
error factor of 6 � 1 on the default probabilities. If we
restrict ourselves to default probabilities within this factor,

Table 1. The table shows the following, from left to right, for both the standard robust and the soft robust approaches
in the risky bond example of §4.1: maximum return (no defaults), expected return (under � ), and downside
guarantees at −10% and −20% under both � and ambiguous distributions within a relative entropy of 3 from
� ; this parameter is selected as 3= ��1�5�.

6 r′x- Ɛ� �r̂
′x-	 ��r̂′x- �−0�1� sup�∈��3���r̂′x- �−0�1� ��r̂′x- �−0�2� sup�∈��3���r̂′x- �−0�2�

Standard robust
1�005 0�2899 0�0334 0�3025 0�5704 0�1208 0�3304
1�010 0�1722 0�0188 0�0346 0�1747 0�0127 0�1136
1�100 0�0123 0�0055 6.6e−6 0�0216 5.8e−11 0�0091

10�00 0�0053 0�0050 0 0 0 0

Soft robust
1�005 0�2933 0�0338 0�3248 0�5954 0�1299 0�3471
1�010 0�2000 0�0220 0�0578 0�2244 0�0022 0�1417
1�100 0�1557 0�0169 0�0248 0�1502 0�0089 0�0995

10�00 0�1557 0�0169 0�0248 0�1502 0�0089 0�0995

the relative entropy ��6� to the perturbed distribution is
given by

��6�=
n∑
i=1

[
6pi log�6�+ �1−6pi� log

(
1−6pi
1−pi

)]
�

We solve the standard robust and soft robust problems for
6 ∈ �1�005�1�01�1�1�10� and compare the results. To solve
these problems, we use the software package ROME (Goh
and Sim 2009) in a MATLAB environment. On a personal
computer with an Intel Pentium® 3.0 GHz processor and
2.0 GB of RAM, solution of each problem for a given ��6�
takes about 30 seconds.

The results are shown in Table 1. Each row of the table
shows the maximum return of a position (with no defaults),
the expected return under the nominal distribution, and
bounds on a 10% and 20% loss in value both under the
nominal distribution and for all distributions within a rela-
tive entropy of 3 from � . Here, the relative entropy on the
ambiguous distribution bounds was chosen because � was
above with a factor of 6= 1�5.5

We make a few points on the results. First, the standard
robust solutions quickly become highly conservative, even
for small 6 (and hence small �). For instance, even for sets
corresponding to a perturbation of the default probabilities
by 10% (which seems very small), the standard robust solu-
tion recommends an 80%+ investment in the risk-free asset
and generates only an additional 0.05% in expected return
over the risk-free rate. Of course, such a position also is
very unlikely to experience large losses, and the downside
guarantees reflect this.

By contrast, the soft robust solutions have higher
expected return and more upside and downside risk.
In some cases, the difference from the standard robust
approach seems dramatic. For instance, for 6= 1�1, the soft
robust approach results in about an extra 1�2% in expected
return and over 14% more in maximum return. The down-
side guarantees are of course somewhat worse (still, for
this position, the chance under � of a 10% loss in portfolio
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value is less than 3%). Also of note is that in this example,
soft robustness at fairly small levels (e.g., 6= 1�1) implies
soft robustness at larger levels (e.g., 6 = 10). This is not
surprising in light of the discussion in §2.4.

The final point worth noting here is the dramatic impact
ambiguity can have in inflating downside guarantees. For
instance, if � is an accurate probabilistic model, the
standard robust solution has an extremely small chance
(0.00066%) of a 10% loss. Yet even for fairly small pertur-
bations of the distribution, this guarantee increases in the
worst-case to a nonnegligible value (about 2%). While we
motivated the choice of the ambiguity sets through errors in
default assessments, ambiguity is a concern for other rea-
sons (such as defaults are likely to be somewhat correlated
in reality), and ignoring it in analyzing downside risks can
lead to assessments that might be grossly understated.

4.2. Asset Allocation

Here we apply the soft robust approach to an asset allo-
cation problem using real-world financial data. In particu-
lar, we investigate the out-of-sample performance of using
a soft robust approach as opposed to a standard robust
approach. We will also compare these approaches to an
approach based on CVaR.

We consider an investor who wishes to allocate wealth
among n assets. The decision vector x ∈ �n denotes the
vector of weights the investor allocates to each asset for a
current time period. We will use the feasible set x ∈ X �=
�x ∈�n� e′x= 1� x� 0�. In a real-world setting, of course,
there might be many constraints in addition to this.

The n assets have an associated, random return vector r̃
over the time period, with ��r̃ � −1� = 1. The portfolio
return after a single period is therefore r̃′x. Denote Ɛ� �r̃	
by r̂. For various types of robust formulations, we will find
an optimal portfolio in a given period. We will then imple-
ment this choice on a new return, based on past market
data, and store the result. We will then re-optimize.

For the robust formulations, let Q denote the family of
sets. For our purposes, we will use the sets from (10) gen-
erated by the entropic risk measure with parameter ( � 0.
In particular, we have

����=
{
� ∈��

1
(
Ɛ�

[
!

(
d�

d�

)]
� �

}
�

with ! being relative entropy. In the example that follows,
we will use the parameter value ( = 50.6

During each time period, we will first solve, as a bench-
mark, the problem

max�r̂′x� x ∈X�CVaR) �r̃
′x�� 0��

for the values ) = 0�1�0�2� � � � �0�9. Notice that as )
increases, the CVaR constraint becomes less restrictive and
therefore the (in-sample) expected return should increase
and the portfolio choices will become more aggressive.

Note that CVaR can be viewed as a standard robust con-
straint (with a different uncertainty set), as CVaR is a
coherent risk measure (see the discussion in the examples
following Theorem 2.1).

For each value of ) and during each time period, we will
also solve the standard robust and soft robust problems:

max�r̂′x� x ∈XQ�����

max�r̂′x� x ∈X�����
for some value � that we will vary with ) in the CVaR
formulation. We will choose � to be as small as possible,
such that the standard robust formulation is no less robust
than the CVaR constraint, i.e., such that for any random
variable Y ,

inf
�>0

{
��+��Q

(
Y

�

)}
�CVaR) �Y � �

Following the reasoning in the proof of Lemma 3.1(a),
the choice �= (−1 log)−1 is the smallest such choice that
guarantees this. In general, the standard robust approach
with this choice of � will be more conservative than the cor-
responding CVaR approach, perhaps considerably so; there
is no reason to expect this approach to ever outperform
CVaR in expected return with this parameter choice.

Finally, for each of these cases we will solve a “compre-
hensive robust” version of the problem:

max�r̂′x� x ∈XQ
C �����

where

XQ
C ���=

{
x ∈X� min

�∈�0�1	

{
��+��Q

(
r̃′x
�

)}
� 0

}
�

The robustness interpretation here is that standard robust-
ness is ensured for all � ∈ ����, and for measures outside
this set, feasibility is ensured at levels that weaken with the
relative entropy divergence (see Example 2.3). This is the
most conservative of the four formulations.

It is not obvious that these problems will necessarily be
feasible for particular parameter choices. If, however, we
assume the presence of a risk-free asset with constant return
rf � 0, then the problem is always feasible. Indeed, if the
investor invests all his or her wealth in the risk-free asset,
we have, for any normalized convex risk measure �,

��rf �= ��0�− rf =−rf � 0�

where we are using translation invariance and the fact that
� is normalized. Alternatively, if we assume the presence
of a nearly risk-free asset whose returns are not constant
but are always nonnegative (e.g., cash), the problem is also
ensured to be feasible. In this case, denoting the nearly
risk-free returns by r̃f � 0, we have

��r̃f �� ��0�= 0�
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where we are using monotonicity and the fact that � is
normalized. Because all four approaches are equivalent to a
constraint based on some normalized convex risk measure,
feasibility is ensured.

For our empirical study, we use monthly historical
returns for n = 11 publicly traded asset classes over the
period of April, 1981 through February, 2006. The asset
classes are listed in Table 2. In Table 3, we list the real-
ized CVaR and VaR for the various assets based on the
data from this time period. Note again that CVaR) �R� can,
roughly speaking, be interpreted as that the (negative of
the) expected value of the asset’s return, given that the
return is in the lower )-tail of its distribution; in particu-
lar, CVaR1 �R� is the negative of the expected return of the
asset.

Using the data described in the previous section, we
solved the four formulations for each of the ten choices of
) and compared the results. In this setup, we used a slid-
ing window of the past three years of returns as the sample
data for solving the problems: i.e., the previous N = 36
returns formed the discrete reference distribution � that
we used to solve the problem. For each set of parameters
and each formulation, we then implemented the optimal
portfolio over the following year’s worth of new returns,
then re-balanced.7 We repeated this process over each year
within the entire data range and tabulated the out-of-sample
performance statistics for each of the formulations.

In Table 4, we see a comparison of the out-of-sample
performance in terms of CVaR) and expected return for
the various risk measures. Table 5 shows the probability
that the out-of-sample return (annualized) drops below a
pre-specified threshold for the different risk measures.

Some key observations from these empirical results are
the following:

1. The standard robust and comprehensive robust
approaches generally did the the best in terms of closeness
to achieving a realized CVaR) less than 0. This matches
intuition, because they are the most conservative risk mea-
sures of the four. Note that there is no guarantee that an
in-sample CVaR constraint will ensure satisfaction of the
CVaR constraint out-of-sample (as we see in Table 4, in
fact this is generally not the case). As ) increases, and
the optimal solution becomes more aggressive, it seems
that the robust approaches tended to become better in out-
of-sample CVaR); interestingly, the CVaR-based approach
seemed to violate the constraint out-of-sample worse as )
increased up to )= 0�7, then improved again for larger ).
There is a trade-off in the out-of-sample CVaR value as )
increases: the portfolios are becoming more aggressive, but
at the same time, larger ) means the CVaR level is less
restrictive. Evidently, for the robust formulations, the latter
effect tended to dominate more as ) increased, but this was
not the case for the CVaR-based approach.

2. Somewhat surprisingly, the soft robust approach sig-
nificantly outperformed CVaR in terms of realized risk
(measured in terms of CVaR) for ) = 0�3� � � � �0�8). This

risk reduction was not always offset by a decrease in
rate of return. For example, for ) = 0�8 and ) = 0�9,
the soft robust measure significantly outperformed CVaR;
this is clearly demonstrated in Figure 2 (in the electronic
companion).

3. The comprehensive robust solutions were quite sim-
ilar to the standard robust solutions for ) � 0�5, as was
the corresponding performance and risk. For )> 0�5, how-
ever, the standard robust approach offered an average of
+3�68% expected return over the comprehensive robust
approach. The probability of bad performance, however,
was significantly higher for large ) for the standard robust
(e.g., 19�8% vs. 2�0% of the (annualized) monthly return
dropping below −20% for the case )= 0�9).

4. Although CVaR had the highest expected perfor-
mance in many of the cases, this was not always so
(see point 2 above), and in nearly every case listed in
Table 5, the investment strategies using CVaR had the high-
est probability of bad performance (the only exceptions
were against the soft robust for ) = 0�1�0�2). Figure 2
emphasizes this graphically for the case )= 0�8; note the
large dips in cumulative return for the CVaR investment
strategy. In this case, both the standard robust and the
soft robust approaches outperform CVaR in final, realized
wealth (with soft robust slightly better than standard robust,
as in the other cases). Noteworthy here is the sizable down-
ward spike in wealth for CVaR with about 3–4 years left.
Neither the standard robust nor the soft robust approach
suffers from this in this case. In general, these two robust
approaches seem to yield more stable growths in wealth
over time than the CVaR approach does.

5. Over the nine values of ), the average out-of-sample
benefit of the soft robust measure over the standard robust
approach was +0�38% of expected return. In fact, in every
case, the soft robust approach performed better out-of-
sample than the standard robust approach. This was traded
off at a cost of a higher level of downside risk. The differ-
ence in downside performance levels (Table 5), however,
often seemed marginal and was in fact very similar for
)> 0�5 across the standard and soft robust approaches.

In summary, it seems that by relaxing the robustness
requirements to soft robust requirements, we can poten-
tially gain out-of-sample performance for not too high a
price in increased downside risk. We emphasize that this
was the case for all the computational experiments here,
each of which was implemented over a 25-year investment
horizon. The results here seem too one-sided and are based
on data that are too expansive to be just a matter of happen-
stance. Perhaps using tools from statistical learning theory,
investigating, the explicit benefits of soft robustness for out-
of-sample performance in asset allocation is an interesting
direction for further research.

5. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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Endnotes
1. We sometimes refer to � as the reference distribution.
2. We can, of course, assume the right-hand side is zero
without loss of generality simply be shifting the objective
by a constant value.
3. Here, convex means if �1 ∈ ���1� and �2 ∈ ���2�, then
for all � ∈ �0�1	, ��1 + �1−���2 ∈ ����1 + �1−���2�.
4. We thank an anonymous referee for this example.
5. For the bounds under � , we took the minimum of
the bounds from Theorem 3.1 and those based on a
sharp Chebyshev bound; although the Theorem 3.1 bounds
scale better (exponentially) than Chebyshev bounds for
large deviations, for these parameter values the Chebyshev
bounds were tighter than the soft robust bounds and looser
than the standard robust bounds. Regardless, as mentioned
in §3, we are always free to use the better of the two
bounds in the function g�3�p� when computing guarantees
that account for ambiguity, as we have done in the adjacent
columns.
6. A rough interpretation of ( is as the reciprocal of the
risk tolerance for a CARA utility investor. We note that
the standard robust formulation is unaffected by the choice
of (, as this formulation is equivalent to a coherent risk
measure; for the soft robust formulation, we found ( = 50
convenient to illustrate the approach as it provided results
in this example that varied smoothly across the ten cases.
7. We did not account for transactions costs in our results.
We would expect with those included that the gap in
out-of-sample performance between the more conservative
solutions (e.g., comprehensive robustness) and the more
aggressive solutions (e.g., CVaR) would narrow somewhat.
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